Título del Proyecto	Activity and connectivity drive neuronal vulnerability and disease progression in Parkinson's disease
N° de expediente asignado / grant number	ASAP-020505
Abstract	Specific brain circuits that are highly melanized with age are primarily affected, particularly early in Parkinson's disease (PD). Models incorporating this aspect of PD have only been developed recently and show that increased neuromelanin (NM) production causes neurodegenerative changes
consistent with PD. The regulators of cellular NM metabolism	
have not been determined, the effect of NM on normal activity	
in these pathways has not been defined (circuitry assessment),	
the potential for NM aggregates to increase a-synuclein (aSyn)	
accumulation has not been evaluated, and the impact of	
extracellular NM on detrimental inflammatory processes has	
not been assessed (brain-body interactions). We will test	
whether activity in melanized brain circuits is a dominant factor	
in the initiation of PD and sustains its progression by seeding	
pathology in connected regions and providing the stimulus for	
chronic inflammation. We will also assess whether	
manipulating NM production and/or brain circuit activity can	
ameliorate these deficits.	

| | Aligning Science Across Parkinson's (ASAP) is a coordinated research
 initiative to advance targeted basic research for Parkinson's disease. Its
 mission is to accelerate the pace of discovery and inform the path to a |
| :--- | :--- | :--- |
| cure through collaboration, research-enabling resources, and data | |
| sharing. The Michael J. Fox Foundation for Parkinson's Research is | |
| ASAP's implementation partner and issued the grant. | |

